
Differential Equations and Paths in Lie Groups: The Product Integral.

In what follows, we let G be a Lie group of matrices and L its Lie algebra. We have been
careful to consider tangent matrices at the identity I of G. These form the Lie algebra L.
What of tangent matrices at any point of G?

Theorem: Let P :R → G. Then P−1dP

dt
∈ L. We say that the tangent matrix dP/dt at

the point P (t) is transported back to I.

Proof: Let t0 ∈ R. Consider the function Q(t) = P (t0)
−1P (t0 + t). Then Q(0) = I, and

so A =
dQ

dt

∣∣∣∣∣
t=0

∈ L. But by calculus, Q′(t) = P (t0)
−1P ′(t0 + t). Thus, A = Q′(0) =

P (t0)
−1P ′(t0) = P (t)−1P ′(t)|t=t0 . Since t0 is arbitrary, we have the result.

Remark. We write DP = P−1dP

dt
. The same argument shows that P ′P−1 is also in L. In

this case, we say that P ′ is right transported to I in contrast to the previous left transport.
Note that P ′P−1 = P (DP )P−1. Note that that if P = etA, then P−1P ′ = P ′P−1 = A. So
we can think of the exponential curve P = etA as a curve with constant tangent vector A.

The operator D is similar to a logarithmic derivative. In calculus 1, f−1f ′ = f ′/f =
d(log f)/dt. In fact, this is precisely Df when G = GL1. Thus DP generalizes the logarith-
mic derivative, though it is not in general a derivative of a logarithm.

The following rules are easily proved:

1. D(cf) = Df (where c is constant).

2. D(g−1) = −g′g−1 (the negative of the right transport of g).

We are now going to generalize the concept of a one parameter group for some of the classical
groups considered before. First, some heuristics.

In a discrete group D, if g ∈ D, the powers gn of g constitute a subgroup of D, called a
cyclic subgroup. For n ≥ 0, The sequence h(n) = gn can be defined recursively by:
1. h(0) = I (the identity of the group).
2. h(n + 1) = h(n) · g (the recursion).

For a continuous group, G, we take as generator an infinitesimal element I + Adt, where A
is in the Lie algebra L of G. The powers h(n) will be replaced by the “powers” H(t) and
the recursion is replaced by a differential equation as follows:

1



1. H(0) = I (the initial condition).
H + dH = H(I + Adt), so H + dH = H + HAdt, or

2. dH/dt = HA (the differential equation).
We already know that the solution is H = etA. The cyclic group generated by the element
g is replaced by the one parameter group generated by the infinitesimal element A ∈ L.

The laws of exponents apply. For example, gngm = gn+m, and analogously etAesA = e(t+s)A.
An alternate recursion for powers is gn+1 = g · gn. The analogous differential equation is
dH/dt = AH. In each case, the solution is the same as before.

More generaly, we can define a product p(n) =
n∏

k=1

gn of different elements g1, g2, . . . , gn

recursively as follows:
1. p(0) = I (the identity of the group.)
2. p(n + 1) = p(n) · gn+1 (the recursion.)

For the continuous analog, we replace the sequence gn by a infinitesimal elements I +A(t)dt.
where A(t) ∈ L, and A(t) is continuous. We then have the differential equation:
1. P (0) = I (the initial condition.)

P + dP = P (I + A(t))dt, so P + dP = P + PA(t)dt, or
2. dP/dt = PA(t) (the differential equation.)
(For the analog of the product gngn−1 · · · g2g1, we would replace (2), by the differential
equation dP/dt = A(t)P .)

The theory of product integrals carries the analogy further. If we break the interval [0, t] into
equal pieces using the subdivision

0 = t0 < t1 < · · · < tn−1 < tn = t, where tk+1 − tk = ∆t = t/n

and consider the product Pn(t) =
n∏

k=1

(I + A(tk))∆t, then in analogy with Riemann sums we

let n → ∞. It turns out that Pn(t) → P (t), and it is a solution to the differential equation

dP/dt = PA(t). The limit of this product is written
t∏

0

(1 + A(s)ds) or
t∏

0

eA(s)ds obtained

by observing that eA(s)ds = 1 + A(s)ds to first order. We do not investigate this further in
this course.

Given the differential equation dP/dt = PA(t) with initial condition P (0) = I, we expect
the solution to be invertible. (It is after all the “product” of infinitesimal invertible elements
I + A(t)dt.) We now prove this result.

Theorem: Let P (t) be the solution of the differential equation dP/dt = PA(t) with initial
condition P (0) = I. Then P (t) is invertible.
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Proof: Let Q(t) be the solution of dQ/dt = −A(t)Q with initial condition Q(0) = I. We
claim that PQ = I. To see this, compute

(PQ)′ = PQ′ + P ′Q = −PAQ + PAQ = 0

Thus PQ is constant. Since its value at t = 0 is I, we have the result.

(This guess for Q was based on our heuristic approach. The inverse of a product is the
product of the inverse in reverse order. The inverse of I + Adt is I − Adt to first order, and
the reverse order recursion will have Q′ = −AQ rather than Q′ = −QA. One could also
guess how to find the inverse Q, by differentiating PQ = I and seeing what happens.)

Thus, the equation dP/dt = PA(t) can also be rewritten DP = P−1dP/dt = A(t), we see
that P (t) is an anti-D-derivative of A(t) with initial value P (0) = I.

We are now going to extend the result on exponentials for the various classical groups. We
first consider the relationship between the determinant and the trace, in order to generalize
the result det(eA) = etrace A, given in the notes on exponentials.

We start with this calculus result on taking the derivative of a determinant.

Lemma. Let A(t) be an n × n differentiable matrix, with columns a1(t), . . . , an(t). Then

d

dt
det A(t) =

n∑

i=1

det Ai(t)

where Ai(t) is the matrix A(t) with the i-th column replaced by
dai

dt
.

Proof: We have A = (a1 · · · an). We know that det(A) is a multilinear function of
a1, . . . , an. We can compute the derivative of A as follows. Let ∆A = A(t + h) − A(t) with
a similar notation for each of the ai. Then

∆ det(A) = det(a1 + ∆a1, · · · , an + ∆an) − det(a1, · · · , an)

Using multi-linearity, this expression becomes

det(∆a1, a2, . . . , an) + det(a1, ∆a2, . . . , an) + · · ·+ det(a1, a2, . . . , ∆an) + R

where R consist of similar expressions with two or more ∆ai’s as arguments. Now divide by
h and let h → 0. We get

(det(A))′ = det(a′
1, a2, . . . , an) + det(a1, a

′
2, . . . , an) + · · ·+ det(a1, a2, . . . , a

′
n)

This is the result. Note: R/h → 0. For example, taking a typical term of R with two ∆ai’s
as arguments, we have

det(∆a1, ∆a2, . . . , an)/h = det(∆a1/h, ∆a2, . . . , an) → det(a′
1, 0, . . . , an) = 0
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We can now give an infinitesimal version of the determinant.

Theorem 1. Let P (t) ∈ GLn where P is continously differentiable and P (t0) = I. Let
P ′(t0) = A. Then

d

dt
det(P )|t=t0 = traceP ′(t0). (1)

Proof: Let P = (p1 . . . pn) where the pi are the columns of P . By hypothesis, pi(t0) = ei,
the standard basis vector in Rn. By the previous result,

d

dt
det(P ) = det(p′1, p2, . . . , pn) + · · ·+ det(p1, p2, . . . , p

′
n).

Therfore

d

dt
det(P )

∣∣∣∣∣
t=t0

= det(p′1(t0), e2, . . . , en) + · · ·+ det(e1, e2, . . . , p
′
n(t0))

= det(a1, e2, . . . , en) + · · ·+ det(e1, e2, . . . , an)

where ai is the i-th column of A = P ′(t0). But the i-th determinant in this sum can easily
be expanded along the i-th row to obtain a11 + · · · + ann = trace(A). For example,

det(a1, e2, . . . , en) = det




a11 0 · · · 0
a21 1 · · · 0
...

...
. . .

...
an1 0 . . . 1




= a11

This proves the result.

With the help of this result, we can prove the following theorem.

Theorem 2. Let P (t) ∈ GLn be continously differentiable, with P (0) = I. Let a(t) =
trace(DP ) = trace(P−1P ′). Then

det P (t) = e
∫ t

0
a(s)ds = e

∫ t

0
trace[P (s)−1P ′(s)]ds (2)

Proof: For any real t0, the function P (t0)
−1P (t) satisfies the hypothesis of Theorem 1.

Taking derivatives at t = t0, we have

d

dt
det[P (t0)

−1P (t)]t=t0 = a(t0)

Thus
d

dt
det[P (t0)

−1][det P (t)]t=t0 = a(t0)
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det P (t0)
−1 d

dt
det P (t)|t=t0 = a(t0)

Since this t0 is arbitrary, we may replace it by t. This equation is a scalar equation. Letting
g(t) = det P (t), this equation becomes

g(t)−1g′(t) = a(t)

or
d

dt
log g = g−1g′ = a(t)

So log g =
∫ t

0
a(s)ds. (The constant of integration is 0, since g(0) = 1.) Finally we have the

required result:

g(t) = det P (t) = e
∫ t

0
a(s)ds = e

∫ t

0
trace[P (s)−1P ′(s)]ds = e

∫ t

0
trace(DP (s))ds

As a simple corollary, we can eliminate the condition P (0) = I. If P (t) ∈ GLn, we take
Q(t) = P (0)−1P (t). Note that DQ = DP , so we have

det(P (0)−1P (t)) = det Q(t) = e
∫ t

0
trace(DP (s))ds

. Therefore, in general, we have

det P (t) = det P (0)e
∫ t

0
trace(DP (s))ds. (3)

Curves in SLn. We have already shown that if trace(A) = 0 then etA ∈ SLn for all t, and
conversely. We now go one better and consider arbitrary curves in SLn.

Theorem 3. If P (t) is a continuously differentiable curve in SLn, then trace(DP ) = 0 for all
t. Conversely, if P (t) is a continuously differentiable curve with P (0) = I and trace(DP ) = 0
for all t, then in P (t) ∈ SLn.

Proof: First, assume P (t) ∈ SLn, so det(P (t) = 1. Using equation (3), this gives∫ t

0
trace(DP (s))ds = 0 for all t. Thus, trace(DP (t)) = 0 for all t. The converse is equally

clear, since by equation (3), if traceDP (t) = 0 for all t, det(P ) = constant.

This second half of this theorem can be stated in terms of differential equations: If P (t) is
an n×n matrix satisfying the equation dP/dt = PA(t) with P (0) = I, and if trace A(t) = 0,
then det P (t) = 1.

As noted above, we have similar results for the equation dP/dt = AP . In this case, we use
the operator Dr defined by DrP = P ′(t)P−1.
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Observations on Linear Differential Equations. We consider the system of homoge-

neous linear differential equations
dx

dt
= A(t)x with initial condition x = x0. Here x is a

column vector. If we solve the matrix differential equation
dP

dt
= A(t)P with P (0) = I,

the solution to the vector equation may easily be verified to be x = P (t)x0. For the initial
condition is clearly true, and clearly,

dx

dt
=

d

dt
(P (t)x0) =

dP

dt
x0 = A(t)Px0 = A(t)x

A way of thinking of the matrix differential equation is that it solves the equation P ′(t) =
A(t)P (t) for the n linearly independent initial conditions x0 = ei for i = 1 to n. And
any initial condition x0 is a linear combination of these standard basis, so the corresponding

solution is a linear combination of the special solutions. If the equation is
dx

dt
= xA(t) where x

is a row vector, the same argument will use the matrix differential equation
dP

dt
= PA(t) with

initial condition P (0) = I. The solution of the vector equation with initial condition x = x0

will then be x = x0P (t). Theorem 3 can then be interpreted as follows: If traceA(t) = 0,
then for any independent vectors x1, . . . , xn, and corresponding solutions xi(t), the volume
V (x1, . . . , xn) is constant.

The Orthogonal Group. We now calculate the Lie Algebra of the Orthogonal group On.
The result is given in the following theorem. In view of our work with one parameter groups,
the result is no surprise.

Theorem 4. The Lie Algebra of On consists of all skew symmetric (n × n) matrices A
(At = −A.) Let P (t) be a continuously differentiable curve in On. Then DP = P−1P ′

is skew symmetric. Conversely, if DP is skew symmetric and P (0) = I, then P (t) ∈ On.
Proof. Let P (t) ∈ On, with P (0) = I. Let A = P ′(0). We show that A+At = 0. To see this,
use the definition of On, namely PP t = I. Now differentiate to get PP ′t+P ′P t = 0. Putting
t = 0, since P (0) = P t(0) = I, we have At + A = 0. Conversely, suppose A(t) + A(t)t = 0,
and DP (t) = A(t) with P (0) = I. Since DP = P−1P ′, we have P ′(t) = PA(t). We compute
PP t by finding its derivative:

(PP t)′ = P (P t)′ + P ′P t = P (PA)t + PAP t = PAtP t + PAP t = P (At + A)P = 0

Therefore PP t = constant, so PP t = P (0)P t(0) = I. Thus P−1 = P t and the result
is proved. (We have used the obvious identity (P t)′ = (P ′)t.) Note that for fixed skew
symmetric matrix A, we get P ′ = PA with P (0) = I which leads to the solution P (t) = etA

considered in the notes on the exponential function. In particular, any skew symmetric
matrix is in the Lie algebra of On.
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